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Solar Wind

In this paper, we examine the effects of radiation pressure,

Poynting-Robertson (PR) drag, and solar wind drag on dust grains

trapped in mean motion resonances with the Sun and Jupiter

in the restricted (negligible dust mass) three-body problem. We

especially examine the evolution of dust grains in the 1:1 reso-

nance. As a first step, the Sun and Jupiter are idealized to both be

in circular orbit about a common center of mass (circular restricted
three-body problem). From the equation of motion of the dust

particle in the rotating reference frame, the drag-induced time rate

of change of its Jacobi "constant," C, is then derived and expressed

in spherical coordinates. This new mathematical expression in

spherical coordinates shows that C, in the 1:1 resonance, both
oscillates and secularly increases with increasing time. The new

expression gives rise to an easy understanding of how an orbit

evolves when the radiation force and solar wind drag are included.

All dust grain orbits are unstable in time when PR and solar wind

drag are included in the Sun-Jupiter-dust system. Tadpole orbits

evolve into horseshoe orbits; and these orbits continuously expand

in size to lead to close encounters with Jupiter. Permanent trapping

is impossible. Orbital evolutions of a dust grain trapped in the 1 : 1

resonance in the planar circular, an inclined case, an eccentric

case, and the actual Sun-Jupiter case are numerically simulated

and compared with each other and show grossly similar time behav-

ior. Resonances other than 1:1 are also explored with the new

expression. Stable exterior resonance trapping may be possible

under certain conditions. One necessary condition for such a trap

is derived. Trapping in interior resonances is shown to be always
unstable. © ,_sAcidic P_, i_.

1. INTRODUCTION

In a previous paper (Liou and Zook, 1995, hereinafter
referred to as Paper I) we described the existence and
evolution of a dust ring, of main belt asteroidal origin,
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composed of micrometer-sized particles that were trapped
into the I : 1 mean motion resonance with Jupiter. It was
found that a limited size range (radius - 1 t_m) ofasteroidal
dust particles, due to the radiation pressure force felt
when particles are released from their parent bodies, often
would be injected directly from main belt parent asteroids
into the 1 : 1 mean motion resonance zone with Jupiter.
There they would remain trapped for tens of thousands of
years before having close encounters with Jupiter which
removed them from the resonance.

When a particle is trapped, it usually starts with a tad-
pole-type orbit oscillating around L4 or L5. The maximum

range of its iibration angle increases with time. This angle
gradually increases to such an extent that the particle's
orbit becomes a horseshoe. The horseshoe orbit keeps
expanding until it becomes possible for the particle to
have a close encounter with Jupiter and, eventually, the

particle is scattered out of the resonance. Radiation pres-
sure, Poynting-Robertson (PR) drag, and solar wind drag
control the orbital evolution of such particles. Otherwise,
they would remain trapped in a stable state and behave
just like the Trojan asteroids.

The effect of radiation pressure and PR drag at the
1 : I mean motion resonance in the restricted three-body
problem has been studied to some extent previously.
These studies include, for example, those of Colombo et
al. (1966), Chernikov (1970), and Schuerman (1980) who

discuss the positions as well as the stability of the Lagran-
gian equilibrium points when radiation pressure and PR
drag forces are included. More recently, Murray (1994)

systematically discusses the dynamical effect of general
drag (nebular drag, gas drag, and PR drag) in the planar,
circular, restricted three-body problem, including also a
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discussion of positions and stability of the Lagrangian
equilibrium points. However, these stability analyses are
all based on a linear approximation that assumes the dis-
placements of orbits from the Lagrangian equilibrium
points are small and that the drag force is also small.
Secure conclusions could not, from these analyses, easily
be drawn about the global stability of orbits in the 1 : 1
resonance with large displacements from the Lagrangian
equilibrium points (see, for example, Murray 1994. p.
480).

Earlier analyses of the time variation of the Jacobi
"constant" were used, for example, to study the "Jacobi
capture" of dust grains near the Earth (Colombo et al.
1966), to determine the stability of an orbit with a drag
force proportional to the velocity of a particle in the rotat-
ing reference frame (e.g., Murray 1994), and the stability
of Trojan precursors with nebular gas drag (Peale 1993).
In Murray's paper (1994), the method is also applied, in
a two-dimensional analysis, to a simple drag force propor-
tional to the velocity of a particle in the inertial reference
frame. He was not able, however, to determine (in Carte-
sian coordinates) the ultimate stability of the orbit at large

displacements from the Lagrangian points.
Building on previous work (especially that of Murray

1994), we derive a new, and simple, mathematical expres-
sion in spherical coordinates that accurately describes
how radiation pressure, PR, and solar wind drag forces
change the Jacobi constant with time and thereby control
the orbital evolution of dust particles in a I : 1 mean motion
resonance location. The formula works equally well for
large displacements as for small. We also apply this new
expression to the orbital evolution of dust grains trapped

in other types of resonances.
With this new mathematical expression, we are also

better equipped than before to understand the physics
behind the global evolution of particles, how their orbits
expand, how their orbits change from tadpoles to horse-
shoes, etc. We show that 1 : 1 resonance traps are always
unstable under these drag forces. Tadpole orbits will
evolve into horseshoe orbits and, eventually, close en-
counters with Jupiter become possible and the particles
exit the resonance trap. Hence, no permanent trapping
is possible for dust grains in the 1 : I mean motion reso-
nance. We also show that interior resonance traps are
similarly unstable, but that quasi-stable exterior reso-
nance traps may exist. One necessary condition for quasi-
stable exterior resonance traps is derived.

The nature of the radiation force and solar wind drag
is briefly summarized in Section 2. In Section 3, we derive
the time dependence of the Jacobi constant on radiation
pressure, PR drag, and solar wind drag in the circular,
restricted three-body problem. We also show how the
time rate of change of the Jacobi constant relates to the
orbital evolution of particles. The case where all three

bodies are in the same plane is discussed in additional
detail. In Section 4, several numerical experiments, in-
cluding those of noncircular, nonplanar cases are pre-
sented. The results are compared with the theory from
Section 3. The implications for micrometer-sized asteroi-
dal dust particles and Trojan dust particles trapped in the
1 : I mean motion resonance with Jupiter is also discussed.

2. RADIATION FORCE AND SOLAR WIND DRAG

The orbital evolution of dust grains in the Solar System
is affected by the radial solar radiation pressure force, by
gravitational forces due to the Sun and planets, and by
PR and solar wind drag forces. In an inertial reference
frame, the equation of motion of a dust particle with geo-
metric cross section A and mass m moving under the
influence of the gravitational forces of the Sun, nine plan-
ets, the radiation pressure force, and the drag forces can
be written as (e.g., Burns et al. 1979)

GM_mm_ = - rs - -----23----r_+ (SA/c)Qpr
L rs J .= I rn

x[(,_,,_,_ .,_sw,
(1)

where v is the velocity vector of the particle, rs is its unit
position vector with respect to the Sun, and M o is the
Sun's mass, while M, and rn are the mass of the nth planet
and the position vector of the particle with respect to that

planet. S, c, and Qpr are the solar energy flux density,
the speed of light, and the radiation pressure coefficient,
respectively. The velocity-independent part of the third
term on the right-hand side of Eq. (1) is the radiation
pressure force term, while the velocity-dependent parts
are the drag terms. Solar wind drag is caused by the
interaction between solar wind ions and the dust particle,
and the net effect is similar to that of PR drag. The ratio
of solar wind drag to PR drag is represented by sw in Eq.
(1). We have assumed sw to be 0.35 (Gustafson 1994).

The radiation pressure coefficient, Qpr, depends on the
properties (density, shape, size, etc.) of the particle. Tra-
ditionally, a dimensionless quantity,/3, is introduced to
specify the effect of radiation pressure and PR drag. It is
defined as

radiation pressure force _ SAQ,e___
/3 = solar gravitation force cGMom"

(2)

The radiation pressure force is the reason some asteroi-
dal dust particles, with/3 - 0.26, are injected into the 1 : 1
mean motion resonance with Jupiter (see Paper I); it is
responsible for changing the effective mass of the Sun as
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seen by the dust particles. Consequently, it changes the
new location of the 1 : 1 mean motion resonance to a_ =
(1 -- /3)l/3aj, where aj is the semimajor axis of Jupiter's
(or any arbitrary planet's) orbit. PR and solar wind drag
forces, on the other hand, cause dust particles to lose
orbital energy and angular momentum and spiral toward
the Sun. A detailed description of the radiation pressure
force, PR, and solar wind drag forces can be found in
Burns et al. (1979).

3. THE RADIAL RADIATION PRESSURE FORCE, PR,

AND SOLAR WIND DRAG IN THE RESTRICTED THREE-

BODY PROBLEM

3.1. Time Variation of the Jacobi Constant

In the classical circular restricted three-body problem,
the three colinear Lagrangian equilibrium points, LI, L2,
and L3, are unstable while the two equilateral Lagrangian
equilibrium points, L4 and L5, are stable (with the condi-

tion that the mass ratio of the secondary to the primary
is less than 0.0385); this is despite the fact that the L4
and L5 points are at effective potential maxima in the (x,
y) plane in the rotating reference frame (e.g., Greenberg
and Davis 1978). The existence of a dissipative medium
may destroy the stability of the L4 and L5 regions, how-
ever, depending on the nature of the dissipative mecha-
nism (Greenberg 1978, Yoder 1979). For dust particles in
the Solar System, PR and the solar wind drag serve to take
away orbital energy and angular momentum expressed in
an inertial system. Their dissipative nature is well defined
by the velocity-dependent terms in Eq. (1). These dissipa-
tive forces on dust grains can sometimes be counterbal-
anced, at least in part, by planetary gravitational perturba-
tions, especially when the dust grain is in orbital

resonance with a planet. As already achieved by others
(e.g., Murray 1994), and for the convenience of the reader,

we first derive the three-dimensional equations of motion
of the particle in Cartesian coordinates--both in an iner-
tial reference frame and in a reference frame that rotates

with the two massive bodies. We then derive the dissipa-
tive mechanisms of the drag forces in spherical coordi-
nates in the rotating reference frame and study their ef-
fects on the stability of the equilibrium points and on the
overall evolution of an orbit.

We first define the symbols and units used in the circu-

lar, restricted three-body problem. Let S and J be repre-
sented by two masses /_t and P-2, respectively (where
/_ + _2 = 1, tx I > ix2), moving in circular orbit around
their center of mass (CM) due to mutual gravitational
attraction. The inertial reference frame, (_:, rl, _), has its
origin at CM. (_:, _7) is the orbital plane of S and J. The
rotating reference frame (x, y, z) is rotating with constant
angular velocity around the collocated _ and z axes, with
the x axis lying along the line from CM to J. The distances

_7

....... x

S

FIG. 1. The inertial coordinate system, (¢, rl), and the coordinate

system, (x, y), corotating with S and J. Both systems have their origins

at the center of mass (CM) of S and J. The polar coordinate system,

(r, _) is also shown. It is related to (x, y) by x = r cos _b and y = r sin

_. See text for the definitions of other quantities.

from the test particle, p, to CM, S, and J, are r, rl, and
r2, respectively. The unit of length is the distance between
S and J. The unit of mass is the total of S and J. The unit

of time is the orbital period of J divided by 2_-. In such
normalized units, the gravitational constant and the angu-
lar velocities of S and J with respect to CM are all unity.
Figure 1 shows the relationships between these quantities
in the planar case (where g and z components are zero).

The components of Eq. (1), with/3 from Eq. (2), are

= -(1 - #)_1 _ -
r_ /z2_ + (1 + sw)Fpg.¢

-(1 /3)/z I rl - r/1 _ - rl2
= -- /.13 /t/,2----_23 -I- (1 -k sW)FpR.r I (3)

-J__! _/z 2 _ _______2+ (1 + Sw)'FpR._; .
r2

t_"= -(1 -/3)_

These are the components of the equation of motion of
a dust grain in an inertial reference frame with solar radia-
tion pressure and PR and solar wind drag terms. Here the
radiation pressure force has been combined into the first

terms on the right-hand side ofEq. (3) and the drag compo-
nents are

FpR,_ =

I'[(_ -- _:i)_ d- ('O--"Q1)_ q-(_--_1)_](_:- _:!) 1
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FpR,n =

FpR,_ =

{[(# - _,),_ + (n - n,)n + (,_- ,_,),_](¢- _,)-/3 c_r---_ll2. r_

(4)

r_ + _ " (9)

When there are no dissipative forces (i.e., FVRS = 0), there
is a constant of the motion (e.g., Moulton 1914), the Jacobi

constant, defined as

Using the coordinate transformation, C -- 2U - (k 2 + _,2 + _2). (I0)

(_ = x cos t - y sin tx sin t + y cos t,
(5)

Equation (3) becomes, in the rotating reference frame,

(! -/3)tz_
)? - 2_ = x r_ (x +/z 2)

/'/'2(X -- /Zl) + (1 -I- sW)FpR x
r3

(1 --/3)/Z_ /Xjy
_, + 2k = y - r_ y -- r3 + (1 + sW)FpR y

(6)

(1 -/3)t_t
r_ Z - r_ z + (1 + sw)FpR,z

or

If we multiply the first of Eq. (6) by k, the second of Eq.
(6) by ._, and the third of Eq. (6) by _., and add, and

use Eq. (10), we obtain the time variation of the Jacobi

constant due to drag forces,

(7= 2(1 + sw)fl__2_ [(k2+crl _,2+ _2)_(yk_x_ )

(x.i"+ y_, + zz +/xzk)(xk + y)' + zz. +/z2x - P-z Y)]

-t- r_ 1

(11)

or

/3_._.___!_[ )2= 2(1 + sw) cr_ (k2 + + _2) _ (yk - x),)

+ (xk+y_+z_)2+ C(p.2) ] .

(12)

where

5_-2_ 3U+
= ax (I + sW)FpR,x

+ 2JC= 3U + (1 + sw)FpR,y
dy

2= OU+oz (I + sW)FpR z,

(7)

Here O(p.z) are terms which are multiplied by the second-
ary mass,/x 2, and in the case of the Sun-Jupiter system

where /z2 - 0.001, these terms can be neglected. This

formula is similar, in part (the major difference being the

ri -2 dependence of PR and solar wind drag that we use),

to that derived in two dimensions by Murray (1994). It

will prove to be much easier, as we shall see, to visualize

particle dynamics, and the behavior of C, in a spherical

coordinate system (r, O, 4') given by the transformation,

(1 13)_,1 /x._Z2
I

U - + + ¼(x 2 + y2) (8)
rl 1"2 z

is the modified potential in the rotating reference frame.

The PR drag components in (x, y, z) coordinate system are

/_l f.[(x +/_2)k + (y -/xz)y + ZZ](X + tz z)
FpR x' = --/3_ _ r_

x = r cos 0 cos 4'

, =rcos0sin4'

r sin 0.

(13)

Here r is the radial distance from CM to the particle, 0

is the latitude angle measured from (x, y) plane toward

positive z direction, and 4' is the longitude angle measured
counterclockwise from positive x direction toward posi-

tive y direction. With this transformation, Eq. (12) be-

comes
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sw_/3/xl [ (r_ cos 0) 2C'=2(I+ "cr_ k2+(rO)2+

+r2_bcos20+ (r'--r]2].
\rl / _1

(14)

If we now use the law of cosines, (r/rO 2 can be expressed
as

(r)_1 --= 1 2p'2rr21C°Sto \ri/(/zJl2=I+ (_(_2), (15)

where tOis the angle between the positive x axis and the
position vector of the particle. This angle becomes 4_
when 0 equals to zero. In the Sun-Jupiter-dust system,
/z2 - 0.001, rt - r, and Eq. (14) can be written as

(7= 2(1 + sw) flP'----_l[2 (_)2+b2c

+ (_,cos 0)2+ _, cos 20].

(16)

This equation shows that when PR and solar wind drag
are included in the circular Sun-Jupiter-dust system, C
has three positive-definite terms and one term depending
on _ (the last term), which depends on the location of the
resonance. In a 1 : 1 resonance, the sign of _ oscillates in
time and its magnitude is less than unity. In an interior
resonance _ is positive-definite while in an exterior reso-
nance, _ is negative-definite. As C (see Eq. (10)) defines
the locus of coordinates where velocity is zero, an increas-
ing or decreasing C implies increasing or decreasing exclu-

sion zones. This expression is independent of how far an
orbit is from any given Lagrangian equilibrium point. It
can be used to find the stability of an orbit in a particular
type of resonance. Detailed discussions of this expression
in various types of resonances are in Sections 3.3 and 3.5.

In the classical circular restricted three-body problem,
the C values associated with five Lagrangian equilibrium
points characterize certain stable orbits that a test particle
could have. Except for C values at the L4 and L5 points,
the C values define the "forbidden regions" (where the
velocity of the test particle would be imaginary). Forbid-
den regions and regions where motion is possible are
separated by zero velocity surfaces or, in the planar case,
by zero velocity curves (ZVCs). For example, a test parti-

cle with a near circular orbit with a C value between Cta
and Ct_ has a tadpole-type orbit. Such a particle can never
enter a certain region around L4 (or L5, depending on
where the particle is placed initially). Here CLN is the
Jacobi constant associated with the zero velocity surface
that contains the Lagrangian point LN. A test particle

with a near circular orbit with a C value between CL2

and CL3 has a horseshoe-type orbit (e.g., Szebehely 1967,
Danby 1989).

In the classical circular restricted three-body problem,
C is a constant. A test particle in a l : 1 resonance cannot
change its orbit from a tadpole to a horseshoe or vice
versa. This is no longer true when the drag forces are
included. The radiation pressure force reduces the effec-
tive mass of the Sun and changes the locations of the
Lagrangian equilibrium points. The drag forces also have
some effect on the locations of the Lagrangian equilibrium
points as indicated by Eqs. (6) and (9).

It has been shown previously, in the two-dimensional
case, that, in a 1 : I resonance with PR drag, a test particle
with a small initial displacement from L4 (or L5) will
oscillate around that equilibrium point, with the displace-
ment growing exponentially in time (e.g., Colombo et al.
1966, Schuerman 1980, Murray 1994). However, when the
displacement becomes large, their linear approximation
cannot be used and firm conclusions could not easily be
drawn about the evolution of an orbit. Our new way of
using the Jacobi constant, however, has no such limita-

tion, if the variation in C can be mathematically expressed
as is the case with Eq. (16). Together with Eq. (10), they
can be used to determine the time dependence of the
global behavior of an orbit regardless of how far the orbit

is from any one given Lagrangian equilibrium point.
In the Solar System, most of the asteroids are concen-

trated toward the ecliptic. This is also true for the microm-
eter-sized asteroidal dust particles that become trapped
in the 1 : I mean motion resonance with Jupiter, where
their inclinations are less than 20° (Paper I). In such a
case, a coplanar circular restricted Sun-Jupiter-dust for-
mulation is a good first approximation and provides a
good foundation for understanding dust motion in the
actual Sun-Jupiter system. Likewise for many dust grains
originating from Trojan'asteroids. In such a case, Eq. (16)
can be simplified to

3.2. Locations of the Lagrangian Equilibrium Points
and the Zero-Velocity Cumes

In order to calculate the locations of the Lagrangian
equilibrium points, Eq. (6) must be solved with the condi-
tion that all time derivatives are zero. The equations
become

0 = x - (1 -r_fl)Vq (x +/x 2) - r-_ (x -/zl)

-I (l+sw)flP"[/x2y(x+/x2) Y]r_ [ _r_ + . (18)
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0=y[l (1 -- fl)/.t.Ir3 P.22]+ (1 + SW)fl/zIr_

x]x L (19)

E(l -- fl)/z I /z2 (I + SW)fl/_,bt2y 10 : z r_ I- r_ _r_ J (20)

There are two possible solutions in Eq. (20),

(1 - fl)/z n /x2 (1 + SW)fl/_lP.2y
+ = 0 (21)

r31 _ cr 4

or

z = 0. (22)

The first solution corresponds to equilibrium points out-
side the (x, y) plane while the second solution corresponds
to equilibrium points in the (x, y) plane. We examine first
the out of the (x, y) plane possibility. It is obvious from
Eq. (21) that if/3 is no larger than 1, the only possible
solution is to have y > 0. If we substitute Eq. (21) into

Eq. (19), we get

(1 + SW)/3P,tx (23)
0 = 1 cr_y

With the condition that y > 0, the only possible solution
is to have x > 0.

If we now divide both sides of Eq. (18) by (x +/z 2) and

again use Eq. (21), we get

_2 [X_2] (I + SW)fl/ztY0 = x + _ -I . (24)
x + I.t2 r3_ cr2(x + lz2)

L4
5 o

< 0 ....

_ L3 kt 19

-5 I L5

-5 0 5

X (AU)

FIG. 2. The locations of the five Lagrangian equilibrium points for

different/3 values (sw is always 0.35 in our calculation). They are pre-

sented by black dots. A "0" indicates the position when/3 = 0 while

a "9" indicates the position when/3 = 0.9. The dots in between "'0"

and "9" are each different by 0. I in ,8 value. The positions of the Sun

and Jupiter are indicated by crosses. Two thick curves indicate the

paths of L4 (that in the first quadrant) and L5 (that in the fourth quadrant)

from ,8 = 0 to/3 = 0.9 if the effect of drag is ignored; this is the same

curve as shown by Schuerman (1980) as part of an arc of a circle of

unit radius centered on the secondary mass (Jupiter).

Fig. 2. It can be seen that the radiation pressure force
has the most effect on changing the equilibrium point
locations.

The Jacobi constant associated with the zero-velocity
curve that contains a given Lagrangian equilibrium point
can be obtained using Eqs. (8) and (10). The results for

/3 = 0.26 (or radius - 1 /_m), sw = 0.35 particles in a
circular Sun-Jupiter-dust system are listed in Table I.

All the Jacobi constants in Table I are less than 3. This

With the conditions that x > 0 and y > 0, the right-hand
side of Eq. (24) can never equal to 0. Therefore, we can
conclude that, when the radiation pressure force on a
particle is smaller than the gravitational attraction from
the Sun, there are no equilibrium points outside the
(x, y) plane. This is also easy to show geometrically.

For the z = 0 case, Eqs. (18) and (19) can be solved
using Taylor series expansions in rt and r2 and some ap-
proximations (e.g., Schuerman 1980, Murray 1994) or,
more directly, can be solved numerically. The latter
method is used here. We show the locations of the five

Lagrangian equilibrium points for different/3 values in

TABLE I

Locations of the Lagrangian Equilibrium Points and the Jacobi

Constants Associated with the ZVCs That Contain those Points

X (AU) Y (AU) CLS

LI 4.5825 - 1.2E - 4 2.4688134

L2 5.4560 0.0 2.5468315

L3 -4.7047 9.64E - 2 2.4555497

L4 2.0866 4.2128 2.4539510

L5 2.1561 - 4. ! 776 2.45395 i 0

Note. ,8 = 0.26 and sw = 0.35, in the circular Sun-Jupiter-dust system

(the semimajor axis of Jupiter is set to 5.2 AU).
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-5

4

a
2

5

-5 5

x (Au)

FIG. 3. Five Lagrangian equilibrium points and three critical ZVCs

of the Sun-Jupiter-dust system with/3 = 0.26, sw = 0.35. The positions

of the Sun and Jupiter are indicated by crosses. While LI (between

Jupiter and Sun) and L2 (outside Jupiter, along +x direction) are along

the x axis, L3 has a noticeable nonzeroy component. The thin, intermedi-

ate, and thick curves are the ZVCs that contain L3, LI, and L2, respec-

tively.

is due to the effect of radiation pressure. The positions
of five Lagrangian equilibrium points and the ZVCs that

pass through L1, L2, and L3 points in the (x, y) plane are
shown in Fig. 3. Apparently the radiation force does not
change the general shapes of these ZVCs. This can be

seen by comparing Fig. 3 with the classical ZVCs (e.g.,
Szebehely 1967). However, there are two major differ-
ences. The first one, as pointed out by Colombo et al.
(1966) and more clearly demonstrated by Murray (1994)
and depending on the nature and strength of the drag
force, is that the locations of LI, L2, and L3 may have

nonzero y components. With PR and solar wind drag, the
existence of nonzero y components for LI, L2, and L3
can be verified easily from Eq. (19). However, only the

y components of L3 and L1 (with very large/3) are notice-
able in Fig. 2. The second difference for our case of/3 =
0.26, contrary to the classical/3 = 0 case, is that CL_ is
smaller than CL2. Consequently, as C increases from CL3,
the corresponding horseshoe orbit expands and evolves
into either a prograde orbit inside an inner oval (containing
S), or a retrograde orbit outside an outer oval (contain
J) when the C value reaches CL_. As C further increases,

the ZVC eventually divides the plane into three possible
regions for an orbit (when C reaches CL2). They are a

prograde orbit inside a small oval around S, an orbit inside
a smaller oval around J, and a retrograde orbit outside

the S-J system. Here the "prograde" and "retrograde"
orbits all refer to the rotating reference frame.

3.3. Evolution of an Orbit in a I : 1 Resonance and the
Effect of lnclination and Eccentricity

For a particle trapped in a 1 : I mean motion resonance
in the planar case, the sign of _ oscillates with time and
its magnitude is less than unity. This means that C varies
periodically with _ and secularly increases with time due
to the _2 and (/'/r) 2 terms (see Eq. (17)). The _2 is the
dominant secular term for a low eccentricity orbit. This
secular increase in C leads to the expansion of the forbid-
den region where particle motion is imaginary. This gradu-
ally forces the tadpole or horseshoe orbits to expand. For
example, if a particle starts in near circular orbit with a
small displacement ("small" is not a necessary condition)
from L4 in the rotating reference frame, its corresponding
C value will be slightly larger than CL4. The forbidden
region then, which contains L4, is small. The particle
moves clockwise around, and exterior to the tadpole-
type forbidden region. As the particle moves around the
forbidden region, C undergoes a sinusoidal variation due
to qband a smaller secular increase due primarily to _2.

This increase in C causes the forbidden region to expand.
This, in turn, forces the particle's orbit to expand. When
C reaches CL3, the forbidden region becomes a horseshoe,
and the particle must orbit outside that horseshoe. As C
further increases, the horseshoe orbit expands to such

an extent that close encounters with J become possible.
Eventually, a close encounter with J will remove the parti-
cle from the resonance. Thus, all orbits are unstable. No
permanent trapping in the 1 : 1 mean motion resonance is

possible unless a particle is put right at a given Lagrangian
equilibrium point, which is highly unlikely in the real Solar
System (Paper I).

In the nonplanar case, where the orbit of the dust parti-
cle is not in the orbital plane of the planet, the conclusion

that all orbits are unstable is still true as shown by Eq.
(16). In this case, it is still the expansion of the zero-

velocity surface that forces the orbit to expand. However,
because of the effect of 0 on both <kand _2, and the
additional term of b2, the short-term variation as well

as the secular increase components will be somewhat

different from those of the planar case. In addition to the
projection effect of tk on the (x, y) plane, the amplitude
of the short-term variation will be smaller by a factor of
cos 2 0. The net result depends on both the inclination and

the orientation of the orbit (i.e., where the longitude of
the ascending node is).

In the classical elliptic restricted three-body problem
where the planet is in an eccentric orbit- and where no
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radiation force is involved, the Jacobi integral is no longer
a constant of the motion. The Jacobi constant becomes

a function of the eccentricity of the planet and time (e.g.,
Szebehely 1967, Marchal 1990). The positions of the La-
grangian equilibrium points also vary. Here we limit our-
selves to a simple qualitative discussion on the effect of
eccentricities of dust grain and of Jupiter's orbits. When
the eccentricities of both Jupiter and the dust particle are

included in the system, additional, time-varying periodic
factors will be combined with k, _b, and 0 in Eq. (16) to
modify the problem. This does not change the general
conclusion that C has a large short-term variation and
small secular increase components. All orbits are unstable
under PR and solar wind drag. However, because of the
strong effect of the test particle's eccentricity on its k, the
overall evolution will be sped up and the speed up rate
increases as the test particle's eccentricity increases.

All the above analytical results are verified in our nu-
merical simulations in Section 4.

3.4. Damping of the Inclination

PR drag is an in-plane drag force and has no effect on
the inclination of an orbit in a Sun-dust two-body system

(e.g., Burns et al. 1979). However, in a Sun-planet-dust
three-body system, the inclination of the dust grain can
be changed. This is especially obvious when the dust grain
is in a I : I mean motion resonance with a planet. If we

substitute FpR,z from Eq. (9) into the _ equation in Eq.
(6), we have

Ix2 fltxl(rr) ]
+r-_ +(l+sw) cr_ IZ

(25)

where the/x 2 terms in FeR,z have been dropped. This equa-
tion describes a typical "underdamped" oscillator (e.g.,
Marion 1970), with an e-folding time

2cr_

te (1 + sw)fl/z I (26)

where all quantities are in the normalized units. In a 1 : 1
mean motion resonance, the damping in the amplitude of
the z motion leads to the damping in the inclination of the
dust grain. The e-folding time here is much longer than
the PR drag life time of a dust grain, if it is not trapped
in any resonance.

3.5. Applications to Interior and Exterior Resonances

Our result (Eq. (16)) can be applied to study interior
and exterior resonances as well. For a dust grain to drift
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toward and become trapped into an interior resonance

with a planet, although it has been argued analytically,
using Hamiltonian mechanics, to be impossible (e.g.,
Henrard and Lemaitre 1983, Peale 1986), such trapping
has actually been observed in numerical simulations
(Jackson and Zook 1992, Liou 1993, Marzari and Vanzani
1994). In all numerical simulations, the trapping is found to
be only temporary. Expression Eq. (16) does not predict
whether or not trapping into interior resonances is possible.
However, it does show that trapping intervals in interior
resonances are always only temporary.

If a dust particle does get trapped in an interior reso-
nance with a planet, its orbital angular velocity is larger
than that of the planet. Thus, in the rotating reference
frame, the particle's _ is positive all the time. This implies

all terms on the right-hand side of Eq. (16) are positive.
As C increases, without limit, the dust grain is eventually
forced to leave the resonance and continue its journey
toward the Sun. Permanent trapping will only be possible
ifa case can be found where (7, on average, is zero.

In an exterior resonance, the particle's ,b, in the rotating
reference frame, is negative all the time. Therefore, in
order to reach a possible equilibrium trapping, (i'/r) 2 and/

or 02 and (_ cos 0)2 must just be large enough to counter-
balance the effect of qband lead to C"= 0. This implies
that in order to reach an equilibrium exterior trap, the

eccentricity and/or inclination of the dust grain must
reach certain values. Planetary resonant perturbations
(e.g., Weidenschilling and Jackson 1993) then are required

to keep the orbital eccentricity at the critical value of e
for C to equal zero, in the planar case.

Another way of treating this problem is to look at the
variation of Cin orbital parameter space. In the planar case,

a-7= YPR 27 R

[aC(da_ OC(de)_xa ]+ [aa \dt/ v + --d; "

(27)

The second bracket on the right-hand side is zero and the
rates of change in a and e due to PR drag are (Wyatt and
Whipple 1950)

da)p _ -flGMQ (2 + 3e 2)R c a(1 -- e2)3/2
(28)

and

de)p _ -flGM_) 5e_ R c 2a2( 1 _ e2)U2. (29)
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The expression of C in terms of the orbital elements of
an orbit is the Tisserand criterion (e.g., Moulton 1914)

C - (1 - fl) + 2V'(I - fl)a(1 - e2), (30)
a

where a and e are the dust grain's semimajor axis and
eccentricity, respectively. This expression is valid when
the planet is in circular orbit and when the dust grain is
not too close to the planet. Even though the dust grain
can come close to the planet during part of its revolution,
this expression is still good in describing the general be-
havior of the dust grain's orbit. If we calculate the partial
derivatives of C with a, and e, using Eq. (30) and substitute

the results, together with Eqs. (28) and (29), into Eq. (27),
the condition for C = 0 is

[ a _ ],/z 2 + 3e 2
l-flJ -2(1-eZ) 3/2" (31)

When a dust grain is in a (p + q)/p exterior mean motion
resonance with a planet,

a ]"__p+q
1 -/3J P , (32)

where p and q are positive integers (see also Weidenschil-
ling and Jackson 1993). This leads to

2+3e 2 -P+q (33)
2(1 - eZ)3/2 p

This means, for a given (p + q)/p exterior mean motion
resonance, there exists an eccentricity (of the dust grain)
according to Eq. (33) that ensures C' = 0. It is not yet clear
whether completely stable external resonances actually
exist, but _7 = 0 is a necessary condition if such stable

resonances exist. We have noted that in long-lived three-
body resonances, the eccentricity of the dust grain drifts
close to the value of e obtained from Eq. (33). In fact the
e obtained from Eq. (33) seems to give a better limiting
value of e than the emaxgiven by Eq. (18) in Weidenschil-
ling and Jackson (1993).

In a three dimensional case, however, the condition for
a stable trap may not exist, due to the effect of drag on
the orbital inclination.

4. NUMERICAL EXPERIMENTS

4.1. 1:1 Mean Motion Resonance in the Coplanar
Circular Sun-Jupiter-Dust Case

In this section, we show the results from our numerical

simulations. The equations of motion of the Sun, Jupiter,
and a dust particle are integrated using RADAU (Everhart

1985) on a HP9000 715/75 workstation. The Sun and Jupi-

4.4

4_3

4.2
>.

4.1

q

1.9 2 2,1 2.2 2.3

x (AU)

FIG. 4. Positions of the test particle, with fl = 0.26 and sw = 0.35

in the rotating reference frame for the first 300 years in the planar,

circular Sun-Jupiter-dust system. The Lagrangian equilibrium point L4

is labeled by the black dot.

ter are gravitationally interacting in circular orbit with
each other and the dust particle while the dust particle
does not affect the motions of the Sun and Jupiter. Jupi-
ter's semimajor axis is set to 5.2 AU. The eccentricity of
the test particle is initially set to near zero to examine
the circular orbit case. We use/3 = 0.26 and sw = 0.35,
corresponding to a l-txm-radius dust particle of density
2.7 gm cm -3 trapped in the 1 : 1 mean motion resonance

with Jupiter (Paper I).
The first test particle is initially placed very close to

L4. It is trapped in the 1 : 1 mean motion resonance with
Jupiter for several hundred thousand years before it has
a close encounter with Jupiter at 250,651 years and is
removed from the resonance. Initially the particle is in a
tadpole orbit around L4 (Fig. 4). Its orbit expands gradu-
ally and becomes a horseshoe after 234,200 years (Fig.
5). The variation in C over the particle's trapping life time
is shown in Fig. 6. Note that this particle's orbit becomes
a horseshoe when its Jacobi constant, C, exceeds Cto
(Table I), as we expected from the analysis in Section 3.

Although this causes the oscillator.y amplitude of _ to
suddenly increase, _ and therefore C merely continue to
smoothly increase with time.

In Fig. 7, we show the detailed variation of C from
200,000 to 204,000 years, as an example to demonstrate
Eq. (17). Qualitatively, it agrees perfectly with Eq. (17),
with a large short-term variation and a small secular in-
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FIG. 5. Positions of the same test particle from Fig. 4, in the rotating

reference frame at four different time periods. They are, from inside

out, 140,000 to 141,000 years, 200,000 to 201,000 years, 230,000 to

231,000 years, and 246,000 to 247,000 years. We connect positions that

are two years apart to form the curves. The five Lagrangian equilibrium

points are indicated as black dots. The positions of Sun and Jupiter are

labeled by crosses.

crease. The time derivative of C from Fig. 7 is also com-
pared, quantitatively, with the right-hand side of Eq. (17).
The comparison is in Fig. 8a. The curve is the time deriva-
tive of C from Fig. 7 while the points are the results by
using positions of the test particle as functions of time to
calculate the right-hand side of Eq. (17). The agreement
is excellent. Note the large oscillatory variation, due to
6, and the smaller positive secular increase with time,
mostly due to 62 (Fig. 8b). Figure 8c shows the still smaller
secular increase due to (Hr) 2. These three figures show

that Eq. (17) does describe the time variation of the Jacobi
constant correctly.

If a test particle is placed initially near L5 instead of
L4, its evolution is similar to the above case. Based on
our analysis in Section 3, there is no difference between

Ct.4 and CL5 for particles with fl as large as 0.26, and
sw = 0.35, in the restricted Sun-Jupiter-dust system.

Our numerical experiments also show no difference in
terms of the global behavior between these two cases.

4.2. I : I Mean Motion Resonance in the Nonplanar
and Noncircular Sun-Jupiter-Dust Cases

In this section, we show some numerical examples of

the nonplanar, noncircular cases. The first one is a dust
particle that starts with an eccentricity of 0.1 and the
longitude of perihelion at 0°, moving in the Sun-Jupiter
system. Jupiter is assumed to have a circular orbit. This
is still a circular (circular Jupiter orbit) case, but the eccen-

2.457

2.455

2.454
J

, , , , I , , , , I , , , ,

0 105 2x105 3x105

Time (years)

FIG. 6. The Jacobi constant of the test particle over a period of 250,651 years in the coplanar, circular restricted Sun-Juiaiter-dust system.
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FIG. 7. A detailed plot of pan of Fig. 6, from 200,000 to 204,000 years.

tricity of the dust particle, which decays with time, makes
the overall evolution quite different from the previous
case. The dust particle is initially placed near L4. It starts
with a tadpole orbit and the orbit gradually expands and
becomes a horseshoe at 193,660 years (Fig. 9). The horse-
shoe orbit keeps expanding until the particle has a close
encounter with Jupiter at 204,476 years. The particle is
then removed from the resonance. In Fig. l0 we show
the variation of C of the particle. Detailed examination
of the curve shows that the particle's orbit becomes a
horseshoe when its C value exceeds CL3. The short-term
variation does not seem to be too much larger than that
in the planar, circular case, while the secular increase is
more dramatic, due to the particle's eccentricity effect
on/'. The total trapping life time is significantly shorter
than that of the circular case.

The next example is a dust particle with 5° inclination
with respect to Jupiter's orbital plane. The longitude of
the ascending node is 30°. Both Jupiter and the dust parti-
cle have circular orbits. This dust particle starts its orbit
as a tadpole around IM. Its orbit expands and becomes
a horseshoe at 236,656 years. Finally the particle has a
close encounter with Jupiter at 245,579 years and is re-
moved from the resonance. The variation in C of the

particle is shown in Fig. l I. Qualitatively, its overall be-
havior is similar to the circular planar case with a large
short-term variation; however the initial secular increase
is faster with time because of the 02 components. This

fast increase slows down as the dissipative nature of drag

contracts the particle into the (x, y) plane (i.e., reduces
its orbital inclination) where the potential is a minimum
along the z direction. The e-folding time according to Eq.
(26) is about 202,500 years, which is in good agreement
with the decay in inclination from the numerical result

(Fig. 12). There is no significant change in the total trap-
ping life time for this inclination compared with the planar
case.

A third example is a dust particle with eccentricity of
0.1, longitude of perihelion at 70° and inclination of 5°

(with respect to the orbital plane of Jupiter) and longitude
of the ascending node at 30°. The eccentricity of Jupiter
is 0.048. This particle starts with a tadpole orbit around
L4 and becomes a horseshoe at 223,600 years. It has a

close encounter with Jupiter at 229,463 years and is re-
moved from the resonance after that. The variation in C

of the particle is shown in Fig. 13. Both its long-term and
short-term variations are much more complicated than
the previous cases. However, it is still the secular increase

component that gradually enlarges the forbidden regions
that forces the orbit to expand from a tadpole to a horse-
shoe and to have a close encounter with Jupiter.

As we can see from the above examples, the evolution
of an orbit becomes more complicated when the eccentric-
ity and inclination of the dust grain are involved. Likewise
when Jupiter's orbital eccentricity is considered. How-
ever, although the planar circular analysis in Section 3
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origin; they had/3 = 0.26 and sw = 0.35 and were often
injected right into the 1 : ! mean motion resonance loca-
tion (which, with this value of/3, is somewhat interior
to Jupiter's orbit) when they were released from their
asteroidal parent bodies. In addition to Jupiter, there were
six other planets perturbing their orbits (in our numerical
simulation, we did not include Mercury and Pluto). The
initial eccentricities of the trapped dust grains lay between
0.1 and 0.35 while their typical inclinations lay between
0 ° and 20°. Their typical initial libration angles (angle from
Jupiter) were about 45° to 135 °. While they were trapped,
their orbits expanded from tadpole orbits to horseshoe
orbits. Most of the particles got out of the resonance
within 30,000 years. Close encounters with Jupiter caused
them to be removed'from the resonance (Paper I). Dust

particles, with considerably smaller fl values, produced
from Trojan asteroids can also be trapped in the 1:1
resonance (Paper I). Their orbital evolution is similar to
that of the asteroidal dust particles. As a matter of fact,

any dust particles trapped in a 1:1 resonance with any
planet will behave similarly. Their evolution can all be
described by the analyses in Section 3.

The real Solar System is more complicated than a sim-

ple circular restricted Sun-Jupiter-dust system. But the
physical nature of the evolution of those dust particles is

Time (years)

FIG. 8. (a) Comparison between the time derivative of C from Fig.
7 (shown as curve) and the results (shown as black dots) by using

positions of the dust particle as functions of time to calculate the right-

hand side of Eq. (17). The agreement is excellent. (b) The contribution
of 62 term in the bracket of Eq. (17) to the secular increase of ('. Term

2 = 2(! + sw)(,Sp.Jc)_ 2. (c) The contribution of 2(//r)-' term in the bracket

of Eq. (17) to the secular increase of (?. Term 1 = 2(I + sw)(fl#l/c)[2(k/

r)"l.

does not describe in detail the evolution of an orbit in these

cases (especially the last one), it still provides guidance in
understanding the nature of the evolution. The natural
trend for an orbit under the influence of PR and solar

wind drag is to evolve from a tadpole to a horseshoe
which eventually leads to a close encounter with Jupiter.
An analytical method for the eccentric Jupiter system
with mutual inclination between objects may be possible

to develop, but much can be learned from direct numerical
simulation alone. The basic physics involved is the same
as in the case of the planar circular system.

4.3. Implication to Asteroidal Dust Particles and
Trojan Dust Particles Trapped in the I :1 Mean
Motion Resonance with Jupiter

The trapped ring particles we predicted to exist from our
numerical analyses in Paper I were of main belt asteroidal

>..
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L1 L2

L5 Ii

-5 0 5

X (aU)

FIG. 9. Positions of a test particle that started with 0.1 eccentricity

and 0° longitude of perihelion in the rotating reference frame at two

different time periods. The Sun and Jupiter are in circular orbits and

the dust particle orbits in the same plane. The inner curve is from 140,000

to 141,000 years (the dust particle's eccentricity has dropped to less

than 0.01). The outer curve is from 200,000 to 201,000 years. Again,

we connect points that are two years apart to form-the curves.
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FIG. 10. The Jacobi constant of the test particle from Fig. 9 over the period of 204,476 years. The particle's orbit becomes a horseshoe when

C exceeds CL3.
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FIG. 11. The Jacobi constant of a test particle over the period of 245,579 years. The test particle has an initial inclination of 5 ° (with respect

to Jupiter's orbital plane) and longitude of the ascending node at 30 ° in a circular Sun-Jupiter-dust system.
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The decay of orbital inclination of the test particle in Fig. I 1. The predicted e-folding time from Eq. (26) is about 202,500 years.
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FIG. 13. The Jacobi constant of a test particle over the period of 229,463 years. The test particle initially has an inclination of 5 ° (with respect

to Jupiter's orbital plane) with longitude of the ascending node at 30 ° and an eccentricity of 0.1 with longitude of perihelion at 70*. The eccentricity

of Jupiter is 0.048. Its longitude of perihelion is set to 0 °.
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still qualitatively described by our analysis. When drag
forces are negligible, particles can get trapped for a much
longer time scale, as in the case of the present Trojan
asteroids. When PR and solar wind drag are included, the
Jacobi constant of a dust particle will increase as is shown
by Eq. (16). This leads to the expansion of an orbit from a
tadpole to a horseshoe and, eventually, a close encounter
with Jupiter becomes unavoidable. This is in good agree-
ment with the results from Paper I.

We can also compare the trapping life time of dust
particles in Paper I with our analysis in this paper. In
the planar, circular Sun-Jupiter-dust system, if a dust
particle has/3 = 0.26, sw = 0.35 and starts with a libration
angle from 45° to 135° (similar to the second inner most
orbit in Fig. 5)_ it will remain trapped for approximately
50,000 years before having a close encounter with Jupiter
(use the data from Section 4. I). If we consider the effects
of eccentricity (0.048 for Jupiter and up to 0.35 for dust
particles) and inclination (up to 20°) on the system, they
have the ability to speed up the growth of an orbit through
increased O2 and (k/r)_ in Eq. (16); with the additional
perturbation from other planets, 30,000 years seems to
be a reasonable trapping life time for real asteroidal dust
particles trapped in the 1 : 1 mean motion resonance with
Jupiter.

Another phenomenon about the 1 : 1 trap, from our nu-
merical calculations in Paper I, is that it is impossible for
a dust grain to drift toward and get trapped in the 1 : 1
resonance with Jupiter. This can easily be understood
from the analyses in Section 3. When a dust grain is
approaching, under PR and solar wind drag, from outside
the location of I : 1 resonance toward it, the C of the dust

grain decreases. When C reaches Cu, trapping in the 1 : 1
resonance becomes possible. However, if the dust grain
does get trapped, its C immediately starts to increase (Eq.
(16)) and expels the dust particle from the 1 : 1 resonance.

Thus, it is impossible for a dust grain to drift toward and
get trapped in a I : 1 resonance. Actually, when the planet
involved is a giant planet, such as Jupiter, gravitational
scattering usually prevents the dust grain from even reach-
ing Cu .

5. CONCLUDING REMARKS

Instead of the Jacobi constant, C, one can consider the
"modified total energy" in the rotating reference frame
defined by

Ej = -5-= v2-u, (34)

where

-U = (1 -/3)//'1 /-L2 I (X2 + y2) (35)
rj r2 2

is the Jacobi potential. Without drag, Ej is also a
constant of the motion with a modified potential, -U,

due to the rotation of the coordinate system (see, e.g.,
Danby 1989). It is also equal to the Hamiltonian constant
in the rotating system (Szebehely 1967). This constant
comes from the only explicitly determined integral of
motion in the three-body system. Because of its close
resemblance to the energy in the inertial system, it may
be more appropriate to call Ej the Jacobi energy.

In the two-body Sun-dust problem the effect of the
drag forces is to take away orbital energy and angular
momentum from the particle (Wyatt and Whipple 1950,
Burns et al. 1979). In the three-body rotating reference
frame, drag acts to take away the modified energy, or
Jacobi energy, of the particle while the grain is in a 1 : 1
trap. By following the variation of the Jacobi energy with
time, we can gain some understanding of the physical
nature of how an orbit evolves.

If there were no drag forces, Ej like C would remain
constant with time. At those points where Ej = -U, the
velocity is zero and we can think of the particle as pressed
up against the side of the potential energy "hill." Coriolis
forces (e.g., Greenberg and Davis 1978) then constrain

the particle motion to librate around the hill--which may
be either tadpole-shaped or horseshoe-shaped--leading
to tadpole- or horseshoe-shaped orbits.

The PR and solar wind drag forces cause Ej to decrease
with time (equivalent to the increase of C). This, in turn,
forces the particle farther down the side of the potential
hill and increases the region of exclusion (i.e., the total
energy, Ej, must always be greater than or equal to the
potential energy, -U). Thus PR and solar wind drag
forces cause the corresponding tadpole or horseshoe or-
bits to expand with time because dust particles must orbit

at lower energies about an ever increasing circumference
of the inaccessible part of the potential hill.

Relating the circular restricted case to the actual case

of the Sun-Jupiter-dust system, where Jupiter is in an
elliptical orbit about the Sun and gravitational perturba-
tions from other planets must be considered, is still not
straightforward, however, and we must rely on numerical
modeling. But we believe the insights that we have gained

with our new mathematical formulation helps in gaining
a physical intuition for the cause of the ever increasing
libration amplitudes.
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Note added in proof. Since acceptance of our present paper for

publication, we have become aware of a very interesting paper by
Beaug_ and Ferraz-Mello (Icarus U0,239-260, 1994). They use a Hamil-

tonian treatment of the variation of resonance variables to derive their

Eq. (15), and corresponding Table I, which give relationships between

orbital eccentricity and integer resonance ratios identical to the require-

ment we derive in our Eq. (33) for potentially stable trapping in exterior

resonances. Our treatment differs from theirs in that it depends on an
examination of the time variation of the Jacobi "constant."
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